extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C3×D4) = C3×C2≀C4 | φ: C3×D4/C3 → D4 ⊆ Aut C23 | 24 | 4 | C2^3.1(C3xD4) | 192,157 |
C23.2(C3×D4) = C3×C23.D4 | φ: C3×D4/C3 → D4 ⊆ Aut C23 | 48 | 4 | C2^3.2(C3xD4) | 192,158 |
C23.3(C3×D4) = C3×C42⋊C4 | φ: C3×D4/C3 → D4 ⊆ Aut C23 | 24 | 4 | C2^3.3(C3xD4) | 192,159 |
C23.4(C3×D4) = C3×C42⋊3C4 | φ: C3×D4/C3 → D4 ⊆ Aut C23 | 48 | 4 | C2^3.4(C3xD4) | 192,160 |
C23.5(C3×D4) = C3×D4⋊4D4 | φ: C3×D4/C3 → D4 ⊆ Aut C23 | 24 | 4 | C2^3.5(C3xD4) | 192,886 |
C23.6(C3×D4) = C3×D4.9D4 | φ: C3×D4/C3 → D4 ⊆ Aut C23 | 48 | 4 | C2^3.6(C3xD4) | 192,888 |
C23.7(C3×D4) = C3×C23.7D4 | φ: C3×D4/C3 → D4 ⊆ Aut C23 | 48 | 4 | C2^3.7(C3xD4) | 192,891 |
C23.8(C3×D4) = C3×C4.9C42 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.8(C3xD4) | 192,143 |
C23.9(C3×D4) = C3×C23.10D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.9(C3xD4) | 192,827 |
C23.10(C3×D4) = C3×C23.11D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.10(C3xD4) | 192,830 |
C23.11(C3×D4) = C6×C23⋊C4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 48 | | C2^3.11(C3xD4) | 192,842 |
C23.12(C3×D4) = C3×C42⋊C22 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.12(C3xD4) | 192,854 |
C23.13(C3×D4) = C3×D4⋊D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.13(C3xD4) | 192,882 |
C23.14(C3×D4) = C3×D4.7D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.14(C3xD4) | 192,885 |
C23.15(C3×D4) = C3×C8⋊D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.15(C3xD4) | 192,901 |
C23.16(C3×D4) = C3×C8⋊2D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.16(C3xD4) | 192,902 |
C23.17(C3×D4) = C3×C8.D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.17(C3xD4) | 192,903 |
C23.18(C3×D4) = C3×C23.19D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.18(C3xD4) | 192,915 |
C23.19(C3×D4) = C3×C23.20D4 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.19(C3xD4) | 192,918 |
C23.20(C3×D4) = C3×D8⋊C22 | φ: C3×D4/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.20(C3xD4) | 192,1464 |
C23.21(C3×D4) = A4×C22⋊C4 | φ: C3×D4/D4 → C3 ⊆ Aut C23 | 24 | | C2^3.21(C3xD4) | 192,994 |
C23.22(C3×D4) = A4×C4⋊C4 | φ: C3×D4/D4 → C3 ⊆ Aut C23 | 48 | | C2^3.22(C3xD4) | 192,995 |
C23.23(C3×D4) = A4×D8 | φ: C3×D4/D4 → C3 ⊆ Aut C23 | 24 | 6+ | C2^3.23(C3xD4) | 192,1014 |
C23.24(C3×D4) = A4×SD16 | φ: C3×D4/D4 → C3 ⊆ Aut C23 | 24 | 6 | C2^3.24(C3xD4) | 192,1015 |
C23.25(C3×D4) = A4×Q16 | φ: C3×D4/D4 → C3 ⊆ Aut C23 | 48 | 6- | C2^3.25(C3xD4) | 192,1016 |
C23.26(C3×D4) = C3×C23.7Q8 | φ: C3×D4/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.26(C3xD4) | 192,813 |
C23.27(C3×D4) = C3×C23.23D4 | φ: C3×D4/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.27(C3xD4) | 192,819 |
C23.28(C3×D4) = C3×C23.24D4 | φ: C3×D4/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.28(C3xD4) | 192,849 |
C23.29(C3×D4) = C3×C23.25D4 | φ: C3×D4/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.29(C3xD4) | 192,860 |
C23.30(C3×D4) = C3×C8⋊8D4 | φ: C3×D4/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.30(C3xD4) | 192,898 |
C23.31(C3×D4) = C3×C8⋊7D4 | φ: C3×D4/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.31(C3xD4) | 192,899 |
C23.32(C3×D4) = C3×C8.18D4 | φ: C3×D4/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.32(C3xD4) | 192,900 |
C23.33(C3×D4) = C6×C4○D8 | φ: C3×D4/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.33(C3xD4) | 192,1461 |
C23.34(C3×D4) = C3×C22.SD16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.34(C3xD4) | 192,133 |
C23.35(C3×D4) = C3×C23.31D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.35(C3xD4) | 192,134 |
C23.36(C3×D4) = C3×C42⋊6C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.36(C3xD4) | 192,145 |
C23.37(C3×D4) = C3×C23.9D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.37(C3xD4) | 192,148 |
C23.38(C3×D4) = C3×C24⋊3C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.38(C3xD4) | 192,812 |
C23.39(C3×D4) = C3×C23.34D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.39(C3xD4) | 192,814 |
C23.40(C3×D4) = C3×C23.8Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.40(C3xD4) | 192,818 |
C23.41(C3×D4) = C3×C23.36D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.41(C3xD4) | 192,850 |
C23.42(C3×D4) = C3×C23.37D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.42(C3xD4) | 192,851 |
C23.43(C3×D4) = C3×C23.38D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.43(C3xD4) | 192,852 |
C23.44(C3×D4) = C6×C4≀C2 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.44(C3xD4) | 192,853 |
C23.45(C3×D4) = C3×M4(2)⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.45(C3xD4) | 192,861 |
C23.46(C3×D4) = C3×C22⋊D8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.46(C3xD4) | 192,880 |
C23.47(C3×D4) = C3×Q8⋊D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.47(C3xD4) | 192,881 |
C23.48(C3×D4) = C3×C22⋊SD16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.48(C3xD4) | 192,883 |
C23.49(C3×D4) = C3×C22⋊Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.49(C3xD4) | 192,884 |
C23.50(C3×D4) = C3×C22.D8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.50(C3xD4) | 192,913 |
C23.51(C3×D4) = C3×C23.46D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.51(C3xD4) | 192,914 |
C23.52(C3×D4) = C3×C23.47D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.52(C3xD4) | 192,916 |
C23.53(C3×D4) = C3×C23.48D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.53(C3xD4) | 192,917 |
C23.54(C3×D4) = C6×C22.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.54(C3xD4) | 192,1413 |
C23.55(C3×D4) = C6×C8⋊C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 48 | | C2^3.55(C3xD4) | 192,1462 |
C23.56(C3×D4) = C6×C8.C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C23 | 96 | | C2^3.56(C3xD4) | 192,1463 |
C23.57(C3×D4) = C3×C22.4Q16 | central extension (φ=1) | 192 | | C2^3.57(C3xD4) | 192,146 |
C23.58(C3×D4) = C6×C2.C42 | central extension (φ=1) | 192 | | C2^3.58(C3xD4) | 192,808 |
C23.59(C3×D4) = C6×D4⋊C4 | central extension (φ=1) | 96 | | C2^3.59(C3xD4) | 192,847 |
C23.60(C3×D4) = C6×Q8⋊C4 | central extension (φ=1) | 192 | | C2^3.60(C3xD4) | 192,848 |
C23.61(C3×D4) = C6×C4.Q8 | central extension (φ=1) | 192 | | C2^3.61(C3xD4) | 192,858 |
C23.62(C3×D4) = C6×C2.D8 | central extension (φ=1) | 192 | | C2^3.62(C3xD4) | 192,859 |
C23.63(C3×D4) = C2×C6×C22⋊C4 | central extension (φ=1) | 96 | | C2^3.63(C3xD4) | 192,1401 |
C23.64(C3×D4) = C2×C6×C4⋊C4 | central extension (φ=1) | 192 | | C2^3.64(C3xD4) | 192,1402 |
C23.65(C3×D4) = C2×C6×D8 | central extension (φ=1) | 96 | | C2^3.65(C3xD4) | 192,1458 |
C23.66(C3×D4) = C2×C6×SD16 | central extension (φ=1) | 96 | | C2^3.66(C3xD4) | 192,1459 |
C23.67(C3×D4) = C2×C6×Q16 | central extension (φ=1) | 192 | | C2^3.67(C3xD4) | 192,1460 |